
TRANSACTION

A collection of actions that transforms the
DB from one consistent state to another
consistent state, during the execution.

States of Transaction

1. Active State – When the instructions of the transaction are running then the transaction is in
active state. If all the ‘read and write’ operations are performed without any error then it
goes to the “partially committed state”; if any instruction fails, it goes to the “failed state”.

2. Partially Committed – After completion of all the read and write operation the changes
are made in main memory or local buffer. If the changes are made permanent on the Database
then the state will change to “committed state” and in case of failure it

will go to the “failed state”.

3. Failed State – When any instruction of the transaction fails, it goes to the “failed state” or if
failure occurs in making a permanent change of data on Database.

4. Aborted State – After having any type of failure the transaction goes from “failed state” to
“aborted state” and since in previous states, the changes are only made to local buffer or main
memory and hence these changes are deleted or rolled-back.

5.Committed State – It is the state when the changes are made permanent on the Data Base
and the transaction is complete and therefore terminated in the “terminated state”.

6.Terminated State – If there isn’t any roll-back or the transaction comes from the
“committed state”, then the system is consistent and ready for new transaction and the old
transaction is terminated.

https://www.geeksforgeeks.org/what-is-database/
https://www.geeksforgeeks.org/difference-between-commit-and-rollback-in-sql/

ACID Properties

Atomicity:

By this, we mean that either the entire transaction takes place at once or doesn’t
happen at all.

There is no midway i.e. transactions do not occur partially.

Each transaction is considered as one unit and either runs to completion or is
not executed at all.

It involves the following two operations.

Abort : If a transaction aborts, changes made to the database are not visible.

Commit : If a transaction commits, changes made are visible.

Atomicity is also known as the ‘All or nothing rule’.

Consistency:

This means that integrity constraints must be maintained so that
the database is consistent before and after the transaction.

It refers to the correctness of a database.

The total amount before and after the transaction must be
maintained.

Total before T occurs = 500 + 200 = 700
Total after T occurs = 400 + 300 = 700

Therefore, the database is consistent .

Inconsistency occurs in case T1 completes but T2 fails.

As a result, T is incomplete.

Isolation

This property ensures that multiple transactions
can occur concurrently without leading to the
inconsistency of the database state.

Transactions occur independently without
interference.

Changes occurring in a particular transaction will
not be visible to any other transaction until that
particular change in that transaction is written to
memory or has been committed.

Durability:

This property ensures that once the transaction
has completed execution, the updates and
modifications to the database are stored in and
written to disk and they persist even if a system
failure occurs.

These updates now become permanent and are
stored in non-volatile memory.

The effects of the transaction, thus, are never
lost.

What is a Schedule?

A schedule is a series of operations from one or more transactions. A schedule can be of
two types:

Serial Schedule: When one transaction completely executes before starting another
transaction, the schedule is called a serial schedule.

A serial schedule is always consistent.

Example: If a schedule S has debit transaction T1 and credit transaction T2, possible
serial schedules are T1 followed by T2 (T1->T2) or T2 followed by T1 ((T2->T1).

A serial schedule has low throughput and less resource utilization.

Concurrent Schedule: When operations of a transaction are interleaved with operations
of other transactions of a schedule, the schedule is called a Concurrent schedule.

Example: The Schedule of debit and credit transactions shown in Table 1 is concurrent.

But concurrency can lead to inconsistency in the database.

The above example of a concurrent schedule is also inconsistent.

Concurrency Control in DBMS

Executing a single transaction at a time will increase the waiting time
of the other transactions which may result in delay in the overall
execution.

Concurrency control provides a procedure that is able to control
concurrent execution of the operations in the database.

The fundamental goal of database concurrency control is to ensure that
concurrent execution of transactions does not result in a loss of
database consistency.

The concept of serializability can be used to achieve this goal, since all
serializable schedules preserve consistency of the database.

Concurrency Control Protocols

Concurrency control protocols are the set of rules
which are maintained in order to solve the
concurrency control problems in the database.

It ensures that the concurrent transactions can
execute properly while maintaining the database
consistency.

Lock based concurrency control protocol

Timestamp based concurrency control protocol

Locked based Protocol

In locked based protocol, each transaction needs to acquire locks before
they start accessing or modifying the data items.

There are two types of locks used in databases.

Shared Lock : Shared lock is also known as read lock which allows
multiple transactions to read the data simultaneously.

The transaction which is holding a shared lock can only read the data
item but it can not modify the data item.

Exclusive Lock : Exclusive lock is also known as the write lock. Exclusive
lock allows a transaction to update a data item.
Only one transaction can hold the exclusive lock on a data item at a time.

While a transaction is holding an exclusive lock on a data item, no other
transaction is allowed to acquire a shared/exclusive lock on the same
data item.

https://www.geeksforgeeks.org/lock-based-concurrency-control-protocol-in-dbms/

There are two kind of lock based protocol mostly used in database:

Two Phase Locking Protocol :
Two phase locking is a widely used technique which ensures strict
ordering of lock acquisition and release.

Two phase locking protocol works in two phases.
Growing Phase : In this phase, the transaction starts acquiring locks
before performing any modification on the data items.

Once a transaction acquires a lock, that lock can not be released until
the transaction reaches the end of the execution.

Shrinking Phase : In this phase, the transaction releases all the acquired
locks once it performs all the modifications on the data item.

Once the transaction starts releasing the locks, it can not acquire any
locks further.

https://www.geeksforgeeks.org/two-phase-locking-protocol/

Strict Two Phase Locking Protocol :

It is almost similar to the two phase locking
protocol the only difference is that in two phase
locking the transaction can release its locks
before it commits, but in case of strict two phase
locking the transactions are only allowed to
release the locks only when they performs
commits.

Timestamp based Protocol

In this protocol each transaction has
a timestamp attached to it.

Timestamp is nothing but the time in which a transaction
enters into the system.

The conflicting pairs of operations can be resolved by the
timestamp ordering protocol through the utilization of
the timestamp values of the transactions.

Therefore, guaranteeing that the transactions take place
in the correct order.

https://www.geeksforgeeks.org/timestamp-based-concurrency-control/

DeadLock

The Deadlock is a condition in a multi-user database
environment where transactions are unable to the
complete because they are each waiting for the
resources held by other transactions.

This results in a cycle of the dependencies where no
transaction can proceed.

Basically, Deadlocks occur when two or more
transactions wait indefinitely for resources held by
each other.

Example:

Transaction T1 holds a lock on some rows in the Students table
and needs to update some rows in the Grades table.

Simultaneously, Transaction T2 holds locks on those very rows
(Which T1 needs to update) in the Grades table but needs to update
the rows in the Student table held by Transaction T1.

What is Deadlock Avoidance?

When a database is stuck in a deadlock, It is always better
to avoid the deadlock rather than restarting or aborting
the database.

The deadlock avoidance method is suitable for smaller
databases whereas the deadlock prevention method is
suitable for larger databases.

Transaction T1 simply waits for transaction T2 to release
the lock on Grades before it begins.

When transaction T2 releases the lock, Transaction T1 can
proceed freely.

What is Deadlock Detection?

When a transaction waits indefinitely to obtain a lock,
The database management system should detect
whether the transaction is involved in a deadlock or not.

Wait-for-graph is one of the methods for detecting the
deadlock situation.

This method is suitable for smaller databases. In this
method, a graph is drawn based on the transaction and
its lock on the resource.

If the graph created has a closed loop or a cycle, then
there is a deadlock.

What is Deadlock Prevention?

For a large database, the deadlock prevention method is suitable.

A deadlock can be prevented if the resources are allocated in such a
way that a deadlock never occurs.

The DBMS analyzes the operations whether they can create a
deadlock situation or not, If they do, that transaction is never
allowed to be executed.

Deadlock prevention mechanism proposes two schemes:

Wait-Die Scheme

Wound Wait Scheme

Wait-Die Scheme:

In this scheme, If a transaction requests a resource that is locked
by another transaction, then one of the two possibilities may
occur:

if TS(Ti)<TS(Tj)- Ti which is requesting a conflicting lock, is
older than Tj. Then Ti is allowed to wait until the data item is
available.

if TS(Ti)>TS(Tj)- Ti is younger than Tj, Then Ti dies. Ti is
restarted later with a random delay but with same time
stamp.

Wound Wait Scheme:

In this scheme, if an older transaction requests for a
resource held by a younger transaction, then an older
transaction forces a younger transaction to kill the
transaction and release the resource.

The younger transaction is restarted with a minute delay
but with the same timestamp.

If the younger transaction is requesting a resource that
is held by an older one, then the younger transaction is
asked to wait till the older one releases it.

Optimistic Concurrency Control (OCC)

Optimistic Concurrency Control is a technique used
in Database Management Systems (DBMS) to
manage concurrent transactions.

It is based on the idea that conflicts between
transactions will be rare, so instead of locking data
for the duration of a transaction, transactions are
allowed to execute without restrictions and are only
checked for conflicts at the end of their execution.

Pessimistic Locking

Pessimistic locking is a more conservative approach to
concurrency control, where a transaction assumes that
conflicts will happen and therefore locks the data it needs to
access or modify for the entire duration of its execution.

Locking Mechanism: A transaction acquires a lock on data
before performing any operation (read, write, or update).

This lock prevents other transactions from accessing the
data until the transaction holding the lock commits or aborts.

Optimistic Locking

Optimistic locking takes a more optimistic approach,
assuming that conflicts between transactions will be
rare.

Instead of acquiring locks ahead of time, transactions
proceed with their operations without locking data.

Conflicts are checked only when the transaction is
about to commit.

Starvation

Starvation or Livelock is the situation when a transaction has to wait
for an indefinite period of time to acquire a lock.

Reasons for Starvation:

If the waiting scheme for locked items is unfair. (priority queue)

Victim selection (the same transaction is selected as a victim
repeatedly)

Resource leak.

Via denial-of-service attack.

Basic Time Stamping

Basic Time Stamping is a concurrency control
mechanism that eliminates deadlock.

A unique time stamp is assigned to each
transaction, usually showing when it was
started.

This effectively allows an age to be assigned
to transactions and an order to be assigned.

Database Recovery

Database Systems like any other computer system, are subject to failures
but the data stored in them must be available as and when required.

Database recovery techniques are used in database management
systems (DBMS) to restore a database to a consistent state after a failure
or error has occurred.

The main goal of recovery techniques is to ensure data integrity and
consistency and prevent data loss.

There are mainly two types of recovery techniques used in DBMS

Rollback/Undo Recovery Technique

Commit/Redo Recovery Technique

Rollback/Undo Recovery Technique

The rollback/undo recovery technique is based on the
principle of backing out or undoing the effects of a
transaction that has not been completed successfully due
to a system failure or error.

This technique is accomplished by undoing the changes
made by the transaction using the log records stored in the
transaction log.

The transaction log contains a record of all the transactions
that have been performed on the database.

The system uses the log records to undo the changes made
by the failed transaction and restore the database to its
previous state.

Commit/Redo Recovery Technique

The commit/redo recovery technique is based on the
principle of reapplying the changes made by a
transaction that has been completed successfully to the
database.

This technique is accomplished by using the log records
stored in the transaction log to redo the changes made
by the transaction that was in progress at the time of the
failure or error.

The system uses the log records to reapply the changes
made by the transaction and restore the database to its
most recent consistent state.

Backup Techniques

There are different types of Backup Techniques. Some of them are listed
below.

Full database Backup: In this full database including data and database,
Meta information needed to restore the whole database, including full-
text catalogs are backed up in a predefined time series.

Differential Backup: It stores only the data changes that have occurred
since the last full database backup.
When some data has changed many times since the last full database
backup, a differential backup stores the most recent version of the
changed data. For this first, we need to restore a full database backup.

Transaction Log Backup: In this, all events that have occurred in the
database, like a record of every single statement executed is backed up.
It is the backup of transaction log entries and contains all transactions
that had happened to the database.

Failure:
Failure in terms of a database can be defined as
its inability to execute the specified transaction or
loss of data from the database.

A DBMS is vulnerable to several kinds of failures
and each of these failures needs to be managed
differently.

There are many reasons that can cause database
failures such as network failure, system crash,
natural disasters, carelessness, sabotage
(corrupting the data intentionally), software
errors, etc.

Database Security

Database Security means keeping sensitive information
safe and prevent the loss of data.

Security of data base is controlled by Database
Administrator (DBA).

The following are the main control measures are used to
provide security of data in databases:

Authentication
Access control
Encryption

Authentication

Authentication is the process of confirmation
that whether the user log in only according to
the rights provided to him to perform the
activities of data base.

A particular user can login only up to his
privilege but he can’t access the other
sensitive data.

The privilege of accessing sensitive data is
restricted by using Authentication.

Access Control:

The security mechanism of DBMS must include
some provisions for restricting access to the data
base by unauthorized users.

Access control is done by creating user accounts
and to control login process by the DBMS.

So, that database access of sensitive data is
possible only to those people (database users)
who are allowed to access such data and to
restrict access to unauthorized persons.

Encryption

This method is mainly used to protect sensitive data (such
as credit card numbers, OTP numbers) and other sensitive
numbers.

The data is encoded using some encoding algorithms.

An unauthorized user who tries to access this encoded
data will face difficulty in decoding it, but authorized users
are given decoding keys to decode data.

